
Lifecycle

ngOnChanges

ngOnInit

ngDoCheck

ngAfterContentInit

ngAfterContentChecked

ngAfterViewInit

ngAfterViewChecked

ngOnDestroy

Called after a bound input property changes

Called once the component is initialized

Called during every change detection run

Called after content (ng-content) has been projected into view

Called every time the projected content has been checked

Called after the component’s view (and child views) has been initialized

Called every time the view (and child views) have been checked

Called once the component is about to be destroyed

Understanding Directives

Attribute vs Structural

Attribute Directives Structural Directives

Look like a normal HTML Attribute
(possibly with databinding or event

binding)

Only affect/ change the element they
are added to

Look like a normal HTML Attribute but
have a leading * (for desugaring)

Affect a whole area in the DOM
(elements get added/ removed)

Services &
Dependency Injection

What are Services?

Application

AppComponent

UserComponentAboutComponent

UserDetailComponent

LogService

UserServicelog data to console

log data to console

store user data

Centralization

Data Storage

Hierarchical Injector

AppModule

AppComponent

Any other Component

Same Instance of Service is available Application-wide

Same Instance of Service is available for all Components (but not for
other Services)

Same Instance of Service is available for the Component and all its
child components

Pipes

Routing

Forms

Two Approaches

Template-Driven

Angular infers the Form Object from
the DOM

Reactive

Form is created programmatically and
synchronized with the DOM

Http

Authentication

How does Authentication work?

“Traditional” Web App SPA

Client (Frontend)

Server (Backend)

Send Auth
Information

Set Session
Cookie

Identify via
Cookie

Server stores the Session!

Client (Frontend)

Server (Backend)

Send Auth
Information

Server doesn’t remember the Client!

Send Token
Authenticate
via Token

Animations

Using Modules &
Optimizing an Angular

App

The Idea behind App Modules

Component

Component

Directive

Module

Feature Modules

Component

Component

Directive

AppModule

Feature Module

AppComponent

Component

Directive

Shared Modules

Component

Component

AppModule

FeatureModule1

Component

Component

DirectiveDirective

FeatureModule2

Shared Module

Modules and Routing (Lazy Loading)

AppModule

Child Router

Component

Directive

FeatureModule

Root Router

Child Routes

Only load when needed!
(Lazy Loading)

Why Modules?

Don‘t bloat the AppModule

Be clear about Who‘s responsible for What

Allows Lazy Loading of Modules

Modules and Service Injection

AppModule

providers: [LogService]

Feature Module Lazy Loaded Feature Module

providers: [LogService]

Root Injector
One Instance of LogService

Loaded at Application Launch:
Provided on Root Level

Uses Root Injector

Modules and Service Injection

AppModule

providers: [LogService]

Feature Module Lazy Loaded Feature Module

providers: [LogService] providers: [LogService]

Root Injector
One Instance of LogService

Child Injector
One Instance of LogService

Loaded at Application Launch:
Provided on Root Level

Loaded Lazily:
Provided on Module Level only

Enforce "Module Scope" by providing in a Component instead of a Module!

Modules and Service Injection

AppModule

Shared Module

providers: [LogService]

Feature Module Lazy Loaded Feature Module

providers: [LogService]

Root Injector
One Instance of LogService

Loaded at Application Launch:
Provided on Root Level

providers: [LogService]

Expected Behavior:
Lazy Loaded Module uses Root Injector

Child Injector
One Instance of LogService

Real Behavior:
Lazy Loaded Module uses Child Injector

Modules and Service Injection

AppModule

Shared Module

providers: [LogService]

Feature Module Lazy Loaded Feature Module

providers: [LogService]

Root Injector
One Instance of LogService

Loaded at Application Launch:
Provided on Root Level

providers: [LogService]

Expected Behavior:
Lazy Loaded Module uses Root Injector

Child Injector
One Instance of LogService

Real Behavior:
Lazy Loaded Module uses Child Injector

Don‘t provide Services in Shared Modules!

Especially not, if you plan to use them in Lazy Loaded
Modules!

Core Module

AppComponent

Component

AppModule

Component

Component

DirectiveDirective

Feature Module

Core Module

Ahead-of-Time Compilation

Just-in-Time Compilation Ahead-of-Time Compilation

Development

Production

App downloaded in Browser

Angular Parses & Compiles Templates (to
JavaScript)

Development

Production

App downloaded in Browser

Angular Parses & Compiles Templates (to
JavaScript)

Advantages of AoT Compilation

Faster Startup sind Parsing and Compilation doesn‘t happen in Browser

Templates get checked during Development

Smaller File Size as unused Features can be stripped out and the Compiler itself isn‘t shipped

Testing

Deployment

Deployment Steps & Things to Keep in Mind

Build your App for Production

Consider AoT Compilation

Set the correct <base> element

For example.com/my-app you should have <base href=“/my-app/”>

Make sure your Server ALWAYS returns index.html

Routes are registered in Angular App, so the server won’t know your
routes! Return index.html in case of 404 errors!

What are Directives?

Directives are Instructions in the DOM!

<p appTurnGreen>Receives a green background!</p>

@Directive({
selector: '[appTurnGreen]'

})
export class TurnGreenDirective {

…
}

Course Project

Planning the App

Root

Shopping List Recipe Book

Shopping List

Header

Ingredient

Model Component

Recipe List

Recipe Item

Recipe Detail

Shopping List Edit

Feature

Recipe

Adding Directives

Root

Shopping List Recipe Book

Shopping List

Header

Ingredient

Model Component

Recipe List

Recipe Item

Recipe Detail

Shopping List Item

Feature

Recipe

Dropdown

Adding Services

Root

Shopping List Recipe Book

Shopping List

Header

Ingredient

Model Component

Recipe List

Recipe Item

Recipe Detail

Shopping List Item

Feature

Recipe

Service

RecipeShopping List

Adding Routing

Root

Shopping List Recipe Book

Shopping List

Header

Ingredient

Model Component

Recipe List

Recipe Item

Recipe Detail

Shopping List Item

Feature

Recipe

Service

RecipeShopping List

Recipe Edit

Adding Forms

Root

Shopping List Recipe Book

Shopping List

Header

Ingredient

Model Component

Recipe List

Recipe Item

Recipe Detail

Shopping List Item

Feature

Recipe

Service

RecipeShopping List

Recipe Edit

TD

R

Forms

Adding Modules

Root

Shopping List Recipe Book

Shopping List

Header

Ingredient

Model Component

Recipe List

Recipe Item

Recipe Detail

Shopping List Item

Feature

Recipe

Service

RecipeShopping List

Recipe Edit

TD

R

Forms

What changed in the Course Update?

Angular 4 is NOT a re-write of Angular 2!

Angular Team switched to Semantic Versioning and renamed Angular 2 to Angular
(Angular 1 will be AngularJS)

Semantic Versioning

MAJOR.MINOR.BUGFIX
e.g. 2.4.3
e.g. 4.0.1

Angular 4 is only an update to Angular 2 (now only “Angular”)

Basics First

Components, Templates & Databinding Angular Basics

Course Project

Directives

Course Project

More on Components & Databinding

Course Project

More on Directives

…

Getting Started Getting Started

…

Debug Eearlier

Directives Angular Basics

Course Project

Debugging an Angular 2 Application

Course Project

Debugging

…

… Getting Started

…

Observables

Routing Routing

Course Project

Course Project

Understanding Observables

…

… …

…

Improved Content

Tried to sharpen Explanations in all Modules

More Details in Routing, Forms and Optimizations Module

Changed Authentication Module to now use the Recipe Book

The Deployment Section now uses the Recipe Book as an Example

Added a Basics Section to learn the Core Features Faster

How to Continue

"Old Content" is kept around until end of April
(I will inform you before it‘s removed!)

Keep in mind: Angular 2 Syntax = Angular 4 Syntax

The "old Content" is still correct!

You don‘t have to go through the updated Content at all!

Download "old"
lectures!

How to Continue (if you want to use the new Content)

Getting Started

Components

Course Project

Directives

Course Project

Services

…

Course Roundup

Getting Started

Basics

Course Project

Components

Course Project

Directives

…

Course Roundup

Start at Basics

Have a look at the
Lecture Titles and
skip over Lectures

you‘re not interested in

How to Continue (if you want to use the new Content)

Getting Started

Routing

Course Project

Forms

…

Course Roundup

…

Getting Started

Routing

Course Project

Forms

…

Course Roundup

…

Restart at Routing/Forms/ …

Download latest Updated
Recipe Book Project

How to Continue (if you want to use the new Content)

Getting Started

Routing

Course Project

Forms

…

Course Roundup

…

Getting Started

Routing

Course Project

Forms

…

Course Roundup

…
Go through the updated

Curriculum and
have a look at the

Sections & Lectures
you found most important

